153 research outputs found

    A digital signal processing perspective on a stability test of linear system transfer functions

    No full text
    Published versio

    Smooth signal extraction from instantaneous mixtures

    No full text
    Published versio

    Adaptive weighted least squares algorithm for Volterra signal modeling

    No full text
    Published versio

    Adaptive chebyshev fusion of vegetation imagery based on SVM classifier

    Get PDF
    A novel adaptive image fusion method by using Chebyshev polynomial analysis (CPA), for applications in vegetation satellite imagery, is introduced in this paper. Fusion is a technique that enables the merging of two satellite cameras: panchromatic and multi-spectral, to produce higher quality satellite images to address agricurtural and vegetation issues such as soiling, floods and crop harvesting. Recent studies show Chebyshev polynomials to be effective in image fusion mainly in medium to high noise conditions, as per real-life satellite conditions. However, its application was limited to heuristics. In this research, we have proposed a way to adaptively select the optimal CPA parameters according to user specifications. Support vector machines (SVM) is used as a classifying tool to estimate the noise parameters, from which the appropriate CPA degree is utilised to perform image fusion according to a look-up table. Performance evaluation affirms the approach’s ability in reducing the computational complexity to perform fusion. Overall, adaptive CPA fusion is able to optimize an image fusion system’s resources and processing time. It therefore may be suitably incorporated onto real hardware for use on vegetation satellite imagery

    Tensor feature hallucination for few-shot learning

    Get PDF
    Few-shot learning addresses the challenge of learning how to address novel tasks given not just limited supervision but limited data as well. An attractive solution is synthetic data generation. However, most such methods are overly sophisticated, focusing on high-quality, realistic data in the input space. It is unclear whether adapting them to the few-shot regime and using them for the downstream task of classification is the right approach. Previous works on synthetic data generation for few-shot classification focus on exploiting complex models, e.g. a Wasserstein GAN with multiple regularizers or a network that transfers latent diversities from known to novel classes.We follow a different approach and investigate how a simple and straightforward synthetic data generation method can be used effectively. We make two contributions, namely we show that: (1) using a simple loss function is more than enough for training a feature generator in the few-shot setting; and (2) learning to generate tensor features instead of vector features is superior. Extensive experiments on miniImagenet, CUB and CIFAR-FS datasets show that our method sets a new state of the art, outperforming more sophisticated few-shot data augmentation methods. The source code can be found at https://github.com/MichalisLazarou/TFH_fewshot

    Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets

    Get PDF
    Recognizing the imperative need for biodiversity protection, the Convention on Biological Diversity (CBD) has recently established new targets towards 2020, the so-called Aichi targets, and updated proposed sets of indicators to quantitatively monitor the progress towards these targets. Remote sensing has been increasingly contributing to timely, accurate, and cost-effective assessment of biodiversity-related characteristics and functions during the last years. However, most relevant studies constitute individual research efforts, rarely related with the extraction of widely adopted CBD biodiversity indicators. Furthermore, systematic operational use of remote sensing data by managing authorities has still been limited. In this study, the Aichi targets and the related CBD indicators whose monitoring can be facilitated by remote sensing are identified. For each headline indicator a number of recent remote sensing approaches able for the extraction of related properties are reviewed. Methods cover a wide range of fields, including: habitat extent and condition monitoring; species distribution; pressures from unsustainable management, pollution and climate change; ecosystem service monitoring; and conservation status assessment of protected areas. The advantages and limitations of different remote sensing data and algorithms are discussed. Sorting of the methods based on their reported accuracies is attempted, when possible. The extensive literature survey aims at reviewing highly performing methods that can be used for large-area, effective, and timely biodiversity assessment, to encourage the more systematic use of remote sensing solutions in monitoring progress towards the Aichi targets, and to decrease the gaps between the remote sensing and management communities

    Gait recognition method for arbitrary straight walking paths using appearance conversion machine

    Get PDF
    We investigate the problem of multi-view human gait recognition along any straight walking paths. It is observed that the gait appearance changes as the view changes while certain amount of correlated information exists among different views. Taking advantage of that type of correlation, a multi-view gait recognition method is proposed in this paper. First, we estimate the viewing angle of the monitor equipment in terms of the probe subject. To this end, our method considers this as a classification problem, where the classification signals are the viewing angles, and the classification features are the elements of the transformation matrix that is estimated by the Transformation Invariant Low-Rank Texture (TILT) algorithm. Then, the gallery gait appearances are converted to the view of the probe subject using the proposed Appearance Conversion Machine (ACM), where the gait features of the spatially neighbouring pixels of the gait feature are considered as the correlated information of the two views. In the end, a similarity measurement is applied on the converted gait appearance and the testing gait appearance. Experiments on the CASIA-B multi-view gait database show that the proposed gait recognition method outperforms the state-of-the-art under most views
    corecore